
Package: vines (via r-universe)
October 21, 2024

Type Package

Title Multivariate Dependence Modeling with Vines

Version 1.1.5

Description Implementation of the vine graphical model for building
high-dimensional probability distributions as a factorization
of bivariate copulas and marginal density functions. This
package provides S4 classes for vines (C-vines and D-vines) and
methods for inference, goodness-of-fit tests,
density/distribution function evaluation, and simulation.

License GPL (>= 2)

URL https://github.com/yasserglez/vines

Depends methods, copula

Imports ADGofTest, cubature, TSP

Suggests testthat

Collate h.R hinverse.R Vine.R show.R dimnames.R vineParameters.R
vineIter.R vineFit.R vineFitML.R vinePIT.R vineGoF.R
vineOrder.R dvine.R pvine.R rvine.R

Repository https://yasserglez.r-universe.dev

RemoteUrl https://github.com/yasserglez/vines

RemoteRef HEAD

RemoteSha a15eb85b8e69ef9afc97244d7ccdc11752b01629

Contents
h-methods . 2
hinverse-methods . 3
RVine-classes . 5
Vine . 5
Vine-class . 6
Vine-distribution . 7
vineFit . 8

1

https://github.com/yasserglez/vines

2 h-methods

vineFit-class . 10
vineFitML-class . 11
vineGoF . 11
vineGoF-class . 13
vineLogLik . 13
vineOrder . 14
vineParameters . 15
vinePIT-methods . 16

Index 18

h-methods Methods for the h-functions

Description

The h function represents the conditional distribution function of a bivariate copula and it should
be defined for every copula used in a pair-copula construction. It is defined as the partial deriva-
tive of the distribution function of the copula w.r.t. the second argument h(x, v) = F (x|v) =
∂C(x, v)/∂v.

Usage

h(copula, x, v, eps)

Arguments

copula A bivariate copula object.

x Numeric vector with values in [0, 1].

v Numeric vector with values in [0, 1].

eps To avoid numerical problems for extreme values, the values of x, v and return
values close to 0 and 1 are substituted by eps and 1 - eps, respectively. The
default eps value for most of the copulas is .Machine$double.eps^0.5.

Methods

signature(copula = "copula") Default definition of the h function for a bivariate copula. This
method is used if no particular definition is given for a copula. The partial derivative is calcu-
lated numerically using the numericDeriv function.

signature(copula = "indepCopula") The h function of the independence copula.

h(x, v) = x

signature(copula = "normalCopula") The h function of the normal copula.

h(x, v; ρ) = Φ

(
Φ−1(x)− ρ Φ−1(v)√

1− ρ2

)

hinverse-methods 3

signature(copula = "tCopula") The h function of the t copula.

h(x, v; ρ, ν) = tν+1

 t−1
ν (x)− ρ t−1

ν (v)√
(ν+(t−1

ν (v))2)(1−ρ2)
ν+1

signature(copula = "claytonCopula") The h function of the Clayton copula.

h(x, v; θ) = v−θ−1(x−θ + v−θ − 1)−1−1/θ

signature(copula = "gumbelCopula") The h function of the Gumbel copula.

h(x, v; θ) = C(x, v; θ)
1

v
(− log v)θ−1

(
(− log x)θ + (− log v)θ

)1/θ−1

signature(copula = "fgmCopula") The h function of the Farlie-Gumbel-Morgenstern copula.

h(x, v; θ) = (1 + θ (−1 + 2v) (−1 + x)) x

signature(copula = "frankCopula") The h function of the Frank copula.

h(x, v; θ) =
e−θv

1−e−θ

1−e−θx + e−θv − 1

signature(copula = "galambosCopula") The h function of the Galambos copula.

h(x, v; θ) =
C(x, v; θ)

v

1−

[
1 +

(
− log v

− log x

)θ
]−1−1/θ

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas.
Enterprise Risk Management Symposium, Chicago.

hinverse-methods Methods for the Inverse of the h-functions

Description

The h−1 function represents the inverse of the h function with respect to its first argument. It should
be defined for every copula used in a pair-copula construction (or it will be evaluated numerically).

Usage

hinverse(copula, u, v, eps)

4 hinverse-methods

Arguments

copula A bivariate copula object.

u Numeric vector with values in [0, 1].

v Numeric vector with values in [0, 1].

eps To avoid numerical problems for extreme values, the values of u, v and return
values close to 0 and 1 are substituted by eps and 1 - eps, respectively. The
default eps value for most of the copulas is .Machine$double.eps^0.5.

Methods

signature(copula = "copula") Default definition of the h−1 function for a bivariate copula.
This method is used if no particular definition is given for a copula. The inverse is calcu-
lated numerically using the uniroot function.

signature(copula = "indepCopula") The h−1 function of the Independence copula.

h−1(u, v) = u

signature(copula = "normalCopula") The h−1 function of the normal copula.

h−1(u, v; ρ) = Φ
(
Φ−1(u)

√
1− ρ2 + ρ Φ−1(v)

)
signature(copula = "tCopula") The h−1 function of the t copula.

h−1(u, v; ρ, ν) = tν

t−1
ν+1(u)

√
(ν + (t−1

ν (v))2)(1− ρ2)

ν + 1
+ ρ t−1

ν (v)

signature(copula = "claytonCopula") The h−1 function of the Clayton copula.

h−1(u, v; θ) =

((
u vθ+1

)− θ
θ+1 + 1− v−θ

)−1/θ

signature(copula = "frankCopula") The h−1 function of the Frank copula.

h−1(u, v; θ) = − log

(
1− 1− e−θ

(u−1 − 1)e−θv + 1

)
/θ

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

Schirmacher, D. and Schirmacher, E. (2008) Multivariate dependence modeling using pair-copulas.
Enterprise Risk Management Symposium, Chicago.

RVine-classes 5

RVine-classes Classes for Regular Vines

Description

Extend the Vine class to represent regular vines.

Slots

See Vine for information about the inherited slots.

Methods

show signature(object = "CVine"): Print a textual representation of the C-vine.

show signature(object = "DVine"): Print a textual representation of the D-vine.

See Also

Vine.

Vine Create Vine Objects

Description

Functions to create Vine objects.

Usage

Vine(type, dimension = 2, trees = dimension - 1,
copulas = matrix(list(indepCopula()),

dimension - 1, dimension - 1))
CVine(dimension = 2, trees = dimension - 1,

copulas = matrix(list(indepCopula()),
dimension - 1, dimension - 1))

DVine(dimension = 2, trees = dimension - 1,
copulas = matrix(list(indepCopula()),

dimension - 1, dimension - 1))

Arguments

type Type of vine. Supported values: "CVine" and "DVine".

dimension See the documentation of the Vine slot.

trees See the documentation of the Vine slot.

copulas See the documentation of the Vine slot.

6 Vine-class

See Also

Vine, CVine, DVine.

Examples

dimension <- 3
copulas <- matrix(list(normalCopula(0.5),

claytonCopula(2.75),
tCopula(0.75, df = 2),
NULL),

ncol = dimension - 1,
nrow = dimension - 1,
byrow = TRUE)

Vine("DVine", dimension = dimension, trees = dimension - 1,
copulas = copulas)

DVine(dimension = dimension, trees = dimension - 1,
copulas = copulas)

Vine-class Base Vine Class

Description

Base class of all classes that implement vine models in the package. It is a virtual class, no objects
may be created from it.

Slots

type: Object of class "character". Descriptive name of the type of vine: Canonical vine or
D-vine.

dimension: Object of class "numeric". Dimension of the vine.

dimensionNames: Object of class "character". Names of the variables of the vine. It is either an
empty character vector or a vector with one element for each variable of the vine.

copulas: Object of class "matrix". It contains the copula objects for each copula in the pair-
copula decomposition. The indexes of the matrix follow the notation used for the subscripts
of Θ in (Aas et al., 2009).

trees: Object of class "numeric". Number of dependence trees of the vine. It should be an integer
between 0 and dimension - 1, including both endpoints. Functions acting on vines assume
that copulas in arcs of all trees greater than trees are independence copulas.

Methods

show signature(object = "Vine"): Print a textual representation of the vine.

dimnames signature(x = "Vine"): Retrieve the names of the variables of the vine.

dimnames<- signature(x = "Vine"): Set the names of the variables of the vine.

Vine-distribution 7

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

See Also

RVine, CVine, DVine.

Vine-distribution Vine Distribution Functions

Description

Density evaluation, distribution function evaluation, and random number generation.

Usage

dvine(vine, u)
pvine(vine, u)
rvine(vine, n)

Arguments

vine A Vine object.

u Vector of the same dimension of the vine or a matrix with one column for each
variable of the vine.

n Number of observations.

Details

The implementation of the dvine function for CVine and DVine objects is based on the Algorithms
3 and 4 of (Aas et al. 2009), respectively.

The pvine function is evaluated through the numerical integration of the density function (using the
cubature package). This is a computationally demanding procedure, even for small dimensions.

The implementation of the rvine function for CVine and DVine objects is based on the Algorithms
1 and 2 of (Aas et al. 2009), respectively.

Value

dnorm returns a vector with the evaluation of the density. pnorm returns a vector with the evaluation
of the distribution function. rvine returns a matrix with one column for each variable of the vine
and one row for each observation.

8 vineFit

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

Bedford, T. and Cooke, R. M. (2001) Monte Carlo simulation of vine dependent random variables
for applications in uncertainty analysis. In 2001 Proceedings of ESREL2001, Turin, Italy.

Bedford, T. and Cooke, R. M. (2001) Probability density decomposition for conditionally dependent
random variables modeled by vines. Annals of Mathematics and Artificial Intelligence 32, 245–268.

Kurowicka, D. and Cooke, R. M. (2005) Sampling algorithms for generating joint uniform distri-
butions using the vine-copula method. In 3rd IASC World Conference on Computational Statistics
& Data Analysis, Limassol, Cyprus.

Examples

dimension <- 3
copulas <- matrix(list(normalCopula(0.5),

claytonCopula(2.75),
tCopula(0.75, df = 2),
NULL),

ncol = dimension - 1,
nrow = dimension - 1)

vine <- DVine(dimension = dimension, trees = dimension - 1,
copulas = copulas)

dimnames(vine) <- c("A", "B", "C")

data <- rvine(vine, 1)
dvine(vine, data)
pvine(vine, data)

vineFit Vine Inference

Description

Estimate a vine model from multivariate data in the unit hypercube. Data can be pseudo-observations
constructed from empirical or parametric marginal cumulative distribution functions.

Usage

vineFit(type, data, method = "ml", ...)

Arguments

type Type of vine. Supported values: "CVine" and "DVine".

data Data matrix of pseudo-observations.

method Inference method. Supported values: "ml" (Maximum Likelihood).

... Additional arguments for the inference method.

vineFit 9

Details

The "ml" (Maximum Likelihood) method starts with the sequential estimation procedure described
in (Aas et al., 2009) and then executes a numerical maximization of the full log-likelihood of the
vine. The sequential procedure is used to determine the family and the initial values of the parame-
ters of each bivariate copula in the decomposition. Additional arguments for this method are:

selectCopula Function provided by the user to select the copulas in the pair-copula construction.
This function should return a copula object and expect the following arguments.

vine Vine object being constructed.
j, i Indexes of the copula under selection in the matrix of the copulas slot of the vine.
x, y Bivariate sample.

The default value is function (vine, j, i, x, y) indepCopula() that assigns the indepen-
dence copula to all the arcs of the vine.

trees Maximum number of dependence trees of the vine. Independence copulas will be used in all
the arcs of the following trees. The final number of dependence trees could be smaller because
of the use of a truncation method. The default value is ncol(data) - 1.

truncMethod Method used to automatically truncate the vine if enough dependence is captured in
a given number of trees. Supported methods are "AIC" and "BIC". See (Brechmann, 2010;
Brechmann et al., 2010) for information about these methods. The default value is "" that
means no truncation.

optimMethod optim method used in the optimization of the log-likelihood function. If "" is spec-
ified the optimization is disabled and the vine calculated using the sequential estimation pro-
cedure is returned. The default value is "Nelder-Mead".

optimControl List of control parameters for optim. The default value is list().

Value

A vineFit object or a subclass with specific information about inference method used. The vine
slot of this object contains the fitted Vine object.

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

Brechmann, E. C. (2010) Truncated and simplified regular vines and their applications. Diploma
thesis. Technische Universitaet Muenchen.

Brechmann, E. C. and Czado, C. and Aas, K. (2010) Truncated regular vines in high dimensions
with application to financial data. Norwegian Computing Center, NR. Note SAMBA/60/10.

See Also

CVine, DVine, vineFit, vineFitML.

10 vineFit-class

Examples

data <- matrix(runif(5 * 100), ncol = 5, nrow = 100)
colnames(data) <- c("A", "B", "C", "D", "E")

selectCopula <- function (vine, j, i, x, y) {
data <- cbind(x, y)
fit <- fitCopula(normalCopula(), data, method = "itau")
fit@copula

}
fit <- vineFit("DVine", data, method = "ml",

selectCopula = selectCopula,
optimMethod = "")

show(fit)
show(fit@vine)

vineFit-class Class for the Results of Vine Inference

Description

Base class of all classes providing information about vine inference. Objects of this class (or sub-
classes) are created by calling the vineFit function.

Slots

vine: Object of class Vine. Fitted vine.

observations: Object of class numeric. Number of observations in the sample.

method: Object of class character. Inference method.

Methods

show signature(object = "vineFit"): Print the result of the vine inference.

See Also

vineFit, vineFitML.

vineFitML-class 11

vineFitML-class Class for the Results of Vine Inference by Maximum Likelihood

Description

Extends the vineFit class to include information about the Maximum Likelihood inference.

Slots

See vineFit for information about inherited slots.

optimMethod: Object of class character. optim method.

optimConv: Object of class numeric. optim convergence code (0 indicates successful completion).

startParams: Object of class numeric. Vector with the parameters of the copulas in the pair-
copula construction calculated using the sequential estimation procedure.

finalParams: Object of class numeric. Vector with the parameters of the copulas in the pair-
copula construction after the maximization of the log-likelihood.

Methods

show signature(object = "vineFitML"): Print information about the fitted vine.

See Also

vineFit, vineFit, vineParameters.

vineGoF Vine Goodness-of-fit Tests

Description

Goodness-of-fit tests to verify whether the dependence structure of a sample is appropriately mod-
eled by vine model.

Usage

vineGoF(vine, data, method = "PIT", ...)

Arguments

vine A Vine object.

data Data matrix of pseudo-observations.

method Goodness-of-fit method. Supported values: "PIT" (Probability Integral Trans-
form).

... Additional arguments for the goodness-of-fit method.

12 vineGoF

Details

The "PIT" (Probability Integral Transform) method uses the vinePIT function to transform the
data into variables which are independent and Uniform(0,1) and then use a hypothesis test to ver-
ify whether the resulting variables are independent and Uniform(0,1). The additional parameter
statistic specifies the test to be applied for this purpose.

statistic Statistic used to verify if the transformed variables are independent and Uniform(0,1).
The default value is "Breymann" and supported methods are:

"Breymann" Test proposed in the Section 7.1 of (Aas et al., 2009). See (Breymann et al.,
2003) for more information.

Value

A vineGoF or a subclass with specific information about the goodness-of-fit method used. The
statistic slot of this object contains the value of the statistic and pvalue the p-value.

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

Breymann, W. and Dias, A. and Embrechts, P. (2003) Dependence structures for multivariate high-
frequency data in finance. Quantitative Finance 1, 1–14.

See Also

vineGoF, vinePIT.

Examples

copula <- normalCopula(c(-0.25, -0.21, 0.34, 0.51, -0.07, -0.18),
dispstr = "un", dim = 4)

data <- rCopula(100, copula)

selectCopula <- function (vine, j, i, x, y) {
data <- cbind(x, y)
fit <- fitCopula(normalCopula(), data, method = "itau")
fit@copula

}
normalCVine <- vineFit("CVine", data, method = "ml",

selectCopula = selectCopula,
optimMethod = "")@vine

normalDVine <- vineFit("DVine", data, method = "ml",
selectCopula = selectCopula,
optimMethod = "")@vine

show(normalCVine)
show(normalDVine)

normalCVineGof <- vineGoF(normalCVine, data, method = "PIT",
statistic = "Breymann")

normalDVineGof <- vineGoF(normalDVine, data, method = "PIT",

vineGoF-class 13

statistic = "Breymann")
show(normalCVineGof)
show(normalDVineGof)

vineGoF-class Class for the Results of Vine Goodness-of-fit Tests

Description

Base class of all classes containing information about vine goodness-of-fit tests. Objects of this
class (or subclasses) are created by calling the vineGoF function.

Slots

method: Object of class character. Goodness-of-fit method.

statistic: Object of class numeric. Value of the test statistic.

pvalue: Object of class numeric. P-value.

Methods

show signature(object = "vineGoF"): Print the result of the goodness-of-fit test.

See Also

vineGoF.

vineLogLik Vine Log-likelihood Evaluation

Description

Evaluate the log-likelihood of a Vine.

Usage

vineLogLik(vine, data)

Arguments

vine A Vine object.

data Data matrix of pseudo-observations.

14 vineOrder

Examples

dimension <- 3
copulas <- matrix(list(normalCopula(0.5),

claytonCopula(2.75),
NULL, NULL),

ncol = dimension - 1,
nrow = dimension - 1,
byrow = TRUE)

vine <- DVine(dimension = dimension, trees = 1,
copulas = copulas)

data <- matrix(runif(dimension * 100),
ncol = dimension, nrow = 100)

vineLogLik(vine, data)

vineOrder Select an Order of the Variables

Description

Select an order of the variables. The order of the variables determines the bivariate dependencies
that will be explicit modeled in the first tree of the vine.

Usage

vineOrder(type, data, method = "greedy", ...)

Arguments

type Type of vine. Supported values: "CVine" and "DVine".

data Data matrix of pseudo-observations.

method Ordering method. Supported values: "random", "greedy".

... Additional arguments for the order method.

Details

In D-vines, the order of the variables determines the structure of all the trees of the vine. This is not
the case for C-vines where the root node of each tree can be selected.

The "random" method returns a random permutation of the variables.

The "greedy" method returns an order of the variables that intends to capture as much dependence
as possible in the first tree of the vine. The method finds the order of the variables that defines a tree
that maximizes a given dependence measure used as edge weights. For C-vines, it is determined
iteratively checking each variable as root node. For D-vines, it is equivalent to solve the traveling
salesman problem (TSP), see (Brechmann, 2010) for details. The TSP is solved using the cheapest
insertion algorithm implemented by the solve_TSP function of the TSP package. The following
are additional parameters for this method.

vineParameters 15

according Dependence measure. The default value is "kendall" and supported values are:

"kendall" Absolute value of Kendall’s τ .
"spearman" Absolute value of Spearman’s ρ.
"pearson" Absolute value of Pearson’s product moment correlation coefficient.
"df" Smaller degrees of freedom of a bivariate t copula.

Value

A vector with the ordered indexes of the variables. This vector should be used to reorder the
variables of the data matrix.

References

Brechmann, E. C. (2010) Truncated and simplified regular vines and their applications. Diploma
thesis. Technische Universitaet Muenchen.

Examples

data <- matrix(runif(5 * 100), ncol = 5, nrow = 500)

vineOrder("CVine", data, method = "random")
vineOrder("DVine", data, method = "greedy",

according = "spearman")

vineParameters Parameters of a Vine

Description

Retrieve or set the parameters of a Vine.

Usage

vineParameters(vine)
vineParameters(vine) <- value

Arguments

vine A Vine object.

value Vector with the parameters of the copulas in the pair-copula construction. This
vector is the result of the concatenation of the parameters slots of the copula
objects in the copulas slot of the Vine object (by rows).

16 vinePIT-methods

Examples

dimension <- 5
copulas <- matrix(c(list(tCopula(-0.25, df = 2),

tCopula(-0.5, df = 4),
tCopula(0.25, df = 6),
tCopula(0.5, df = 8)),

rep(list(NULL), 12)),
ncol = dimension - 1,
nrow = dimension - 1,
byrow = TRUE)

vine <- DVine(dimension = dimension, trees = 1,
copulas = copulas)

dimnames(vine) <- c("A", "B", "C", "D", "E")

vineParameters(vine)
show(vine)

vineParameters(vine) <- c(-0.25, 3, -0.5, 5, 0.25, 7, 0.5, 9)

vineParameters(vine)
show(vine)

vinePIT-methods Vine Probability Integral Transform Methods

Description

Probability integral transform (PIT) of (Rosenblatt, 1952) for vine models. The PIT converts a set
of dependent variables into a new set of variables which are independent and uniformly distributed
in (0, 1) under the hypothesis that the data follows a given multivariate distribution.

Usage

vinePIT(vine, u)

Arguments

vine A Vine object.

u Vector with one component for each variable of the vine or a matrix with one
column for each variable of the vine.

Value

A matrix with one column for each variable of the vine and one row for each observation.

vinePIT-methods 17

Methods

signature(vine = "CVine") PIT algorithm for CVine objects based on the Algorithm 5 of (Aas
et al., 2009).

signature(vine = "DVine") PIT algorithm for DVine objects based on the Algorithm 6 of (Aas
et al., 2009).

References

Aas, K. and Czado, C. and Frigessi, A. and Bakken, H. (2009) Pair-copula constructions of multiple
dependence. Insurance: Mathematics and Economics 44, 182–198.

Rosenblatt, M. (1952) Remarks on multivariate transformation. Annals of Mathematical Statistics
23, 1052–1057.

See Also

vinePIT.

Examples

dimension <- 3
copulas <- matrix(list(normalCopula(0.5),

claytonCopula(2.75),
NULL, NULL),

ncol = dimension - 1,
nrow = dimension - 1,
byrow = TRUE)

vine <- CVine(dimension = dimension, trees = 1,
copulas = copulas)

data <- matrix(runif(dimension * 100),
ncol = dimension, nrow = 100)

vinePIT(vine, data)

Index

∗ classes
RVine-classes, 5
Vine-class, 6
vineFit-class, 10
vineFitML-class, 11
vineGoF-class, 13

∗ distribution
Vine-distribution, 7

∗ htest
vineGoF-class, 13

∗ methods
h-methods, 2
hinverse-methods, 3
Vine-distribution, 7
vinePIT-methods, 16

∗ models
RVine-classes, 5
Vine-class, 6
vineFit-class, 10
vineFitML-class, 11
vineGoF-class, 13

∗ multivariate
RVine-classes, 5
Vine-class, 6
Vine-distribution, 7
vineFit-class, 10
vineFitML-class, 11
vineGoF-class, 13

copula, 2, 4, 6, 9, 15
cubature, 7
CVine, 6, 7, 9, 17
CVine (Vine), 5
CVine-class (RVine-classes), 5

dimnames,Vine-method (Vine-class), 6
dimnames<-,Vine,ANY-method

(Vine-class), 6
dimnames<-,Vine-method (Vine-class), 6
DVine, 6, 7, 9, 17

DVine (Vine), 5
dvine (Vine-distribution), 7
dvine,CVine-method (Vine-distribution),

7
dvine,DVine-method (Vine-distribution),

7
DVine-class (RVine-classes), 5
dvine-methods (Vine-distribution), 7

h (h-methods), 2
h,claytonCopula-method (h-methods), 2
h,copula-method (h-methods), 2
h,fgmCopula-method (h-methods), 2
h,frankCopula-method (h-methods), 2
h,galambosCopula-method (h-methods), 2
h,gumbelCopula-method (h-methods), 2
h,indepCopula-method (h-methods), 2
h,normalCopula-method (h-methods), 2
h,tCopula-method (h-methods), 2
h-methods, 2
hinverse (hinverse-methods), 3
hinverse,claytonCopula-method

(hinverse-methods), 3
hinverse,copula-method

(hinverse-methods), 3
hinverse,frankCopula-method

(hinverse-methods), 3
hinverse,indepCopula-method

(hinverse-methods), 3
hinverse,normalCopula-method

(hinverse-methods), 3
hinverse,tCopula-method

(hinverse-methods), 3
hinverse-methods, 3

numericDeriv, 2

optim, 9, 11

pvine (Vine-distribution), 7

18

INDEX 19

pvine,CVine-method (Vine-distribution),
7

pvine,DVine-method (Vine-distribution),
7

pvine-methods (Vine-distribution), 7

RVine, 7
rvine (Vine-distribution), 7
rvine,CVine-method (Vine-distribution),

7
rvine,DVine-method (Vine-distribution),

7
RVine-class (RVine-classes), 5
RVine-classes, 5
rvine-methods (Vine-distribution), 7

show,CVine-method (RVine-classes), 5
show,DVine-method (RVine-classes), 5
show,Vine-method (Vine-class), 6
show,vineFit-method (vineFit-class), 10
show,vineFitML-method

(vineFitML-class), 11
show,vineGoF-method (vineGoF-class), 13
solve_TSP, 14

uniroot, 4

Vine, 5, 5, 6, 7, 9–11, 13, 15, 16
Vine-class, 6
Vine-distribution, 7
vineFit, 8, 9–11
vineFit-class, 10
vineFitML, 9, 10
vineFitML-class, 11
vineGoF, 11, 12, 13
vineGoF-class, 13
vineLogLik, 13
vineOrder, 14
vineParameters, 11, 15
vineParameters<- (vineParameters), 15
vinePIT, 12, 17
vinePIT (vinePIT-methods), 16
vinePIT,CVine-method (vinePIT-methods),

16
vinePIT,DVine-method (vinePIT-methods),

16
vinePIT-methods, 16

	h-methods
	hinverse-methods
	RVine-classes
	Vine
	Vine-class
	Vine-distribution
	vineFit
	vineFit-class
	vineFitML-class
	vineGoF
	vineGoF-class
	vineLogLik
	vineOrder
	vineParameters
	vinePIT-methods
	Index

